If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-12=41
We move all terms to the left:
x^2-12-(41)=0
We add all the numbers together, and all the variables
x^2-53=0
a = 1; b = 0; c = -53;
Δ = b2-4ac
Δ = 02-4·1·(-53)
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{53}}{2*1}=\frac{0-2\sqrt{53}}{2} =-\frac{2\sqrt{53}}{2} =-\sqrt{53} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{53}}{2*1}=\frac{0+2\sqrt{53}}{2} =\frac{2\sqrt{53}}{2} =\sqrt{53} $
| -5+2(-7x+4)=122 | | X+y=72/15 | | 1/x=18 | | 7k2-16k+100=0 | | 2(x+2)=x2 | | 10p+4p+68=0 | | 2(3x+4)=2(x+1) | | 3h^2+12h-112=0 | | 5x+3x+180=360 | | 23x+21=180 | | B=7+2a | | x/4=(3=x/8+11) | | 6x+18=8x+9 | | m^2-12m=8 | | 256=–1/2p3 | | x/4=3x/8+11 | | -3/5x+1/5(9)=9/5 | | 191=-w+78 | | 4,500-b=-3b | | -y+238=52 | | -3/5(0)+1/5y=9/5 | | 1b+21=7b+6 | | W(x)=0.12x+72 | | 1.5(d+5)=71.25 | | 2(-d)=2-4d | | m^2-12m-8=0 | | 14-3x=7-x | | 13u=72+5u | | 14-b=-15 | | 8.8+0.8x=12.4 | | k^2=11k-30 | | 4/2.4=10/x |